
The Linux Sysadmins Guide to Virtual Disks i

The Linux Sysadmins Guide to Virtual
Disks

From the Basics to the Advanced

Copyright © 2009-2016 Tim Bielawa

The Linux Sysadmin’s Guide to Virtual Disks by Tim Bielawa is licensed under the Cre-
ative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). To view
a copy of the CC BY-SA 4.0 License, please visit:

https://creativecommons.org/licenses/by-sa/4.0/

Second Edition DRAFT - In Progress - 20XX

Printed in The United States

Published by Scribe’s Guides

New York, NY, USA
Web Site: https://scribesguides.com/

Editors:

Henry Graham
Jonathan Connell
Jyoti Sabharwal

Cover Designer: Tim Bielawa

TheDiskComponents Image (Figure B.1, “DiskDriveComponents” [67])whichappears
on both covers and in the Disk Drive History appendix of this book is remixed from the
Wikipedia imageDisk-structure2.svg. Theoriginal image ¹ is licensedasawork
in the worldwide public domain. Original image created by Wikipedia users MistWiz ²
and Heron2 ³ . The image was last updated by Tim Bielawa as displayed in this book.

Library of Congress Control Number: 2016903293

Soft Cover ISBN-13: 978-0-692-64121-7

¹ https://commons.wikimedia.org/wiki/File:Disk-structure2.svg
² https://en.wikipedia.org/wiki/User:MistWiz
³ https://en.wikipedia.org/wiki/User:Heron2

The Linux Sysadmins Guide to Virtual Disks iii

Contents

Acknowledgments 1

1 Introduction 3

1.1 Introduction . 3

1.2 Typographical Conventions . 3

1.3 Units & Prefixes . 5

1.4 Getting Help/Feedback . 5

1.5 Updates and Alternative Formats . 6

1.6 About The Author . 6

2 The Virtual Disk Cookbook 7

2.1 Creating Simple Images . 7

2.2 Resizing Disk Images . 8

2.2.1 Resizing RAW Images . 8

2.2.2 Resizing QCOW2 Images . 19

2.3 Query an Image for Information . 23

2.4 Converting Between RAW and QCOW2 . 25

2.4.1 Convert an Image from RAW to QCOW2 25

2.4.2 Convert an Image from QCOW2 to RAW 25

2.5 Creating Disks with Backing Images . 26

2.6 Comitting changes to a backing image . 28

2.7 Cloning a Physical Disk . 28

3 Disk Concepts 30

3.1 Creating a 1GiB virtual disk from scratch 32

3.1.1 Background on the dd command 32

3.1.2 Running dd . 33

3.1.3 Examining the Created File . 33

3.1.4 Create a Partition Table . 35

3.2 Devices and Partitions . 36

3.2.1 Introduction . 36

3.2.2 Creating a Loop Device . 37

3.2.3 Examine the loop device . 38

3.2.4 Creating partitions . 39

3.2.5 Formatting Partitions . 40

3.2.6 Cleaning Up . 43

4 Helper Utilities 44

4.1 libguestfs . 45

4.1.1 guestmount . 45

4.1.2 virt-filesystems . 45

4.1.3 virt-rescue . 46

4.1.4 virt-resize . 46

4.1.5 virt-sparsify . 46

4.2 virt manager . 48

The Linux Sysadmins Guide to Virtual Disks v

5 Disk Formats 49

5.1 RAW . 49

5.2 QCOW . 49

5.3 QCOW2 . 50

5.4 Other Formats . 50

6 Performance Considerations 52

6.1 I/O Caching . 53

6.1.1 Write-back Caching . 54

6.1.2 Write-through Caching . 55

6.2 I/O Schedulers . 55

6.2.1 Additional Resources . 56

7 Troubleshooting/FAQs 57

8 Glossary 59

A Appendix: Man Pages 64

A.1 UNITS . 64

B Appendix: Disk Drive History 66

B.1 Disk Drive Components . 66

B.2 Access Modes . 68

B.2.1 CHS Addressing . 68

B.2.2 LBA Addressing . 69

B.3 The Master Boot Record . 69

Colophon 73

Dedication

This book is dedicated to the loving memories of Seth Vidal and Donald Brewer.

Seth, you were the kind of person who always stuck to what they believed in once they
decided what that was. There are few people you can truly say that about. Your creativity
and technical prowess changed the world in ways most people couldn’t dream of. It’s a
tragedy we lost you so early, but I can promise you one thing: your contributions to the
world were inspirational and it’s going to take a lot of people to pick up where you left off.

As you used to say, Don, lemme be honest wit’cha.... You were always a stand up gentle-
man, sharp as a tack, and loyal as hell to anyone you were responsible for. You may be
gone now, but you will never be forgotten by those whose lives you touched.

The Linux Sysadmins Guide to Virtual Disks 1 / 73

Acknowledgments

This book wouldn’t have been possible without the gracious advice, contributions, and
support I received fromsomanypeople. In fact, there’s somanypeople that I can’t remem-
ber themall! You knowwho you are— coworkers, friends, the people reporting errors, the
people sending random emails saying they enjoyed the book, the people sending emails
describing a tough situation they were in that the guide helped them get out of. Thanks
everybody!

Andrew “Hoss” Butcher. You’re a badass friend and an evenmore talented individual. You
and I could hack or riff on anything together and have funwith it. Give Hampus and Ripley
a kitty treat for me some time, will ya?

Thanks to John Eckersberg and Chris Venghaus for copious amounts of feedback early on.
It really helped to stoke my fire and get things moving.

And a special thanks to Chris for being my biggest word-of-mouth referral. I have no idea
how you meet all these people with burning needs to have their virtual disk questions
answered, but I’m glad you refer them tome when you do.

Alex Wood, your eclectic interests never fail to serve my personal interests in some way.
Thanks for the assist with that XSLT a while back. Coincidentally, that XSLT ⁴ pertained to
rendering the very Acknowledgements section you’re reading right now. So I guess we all
owe you debt of gratitude for that!

Jorge Fábregas, youwere a fabulous unexpected resourcewhenmost of themajor writing
was happening for this book. Thanks for repeatedly reaching out to me with your feed-
back and suggestions and pointing out errors. This book is better because of your unique
contributions.

⁴ Seemyblogpostaboutdblatex+docbook+acknowledgements sections for the interestingdetails: https:
//blog.lnx.cx/2013/03/27/dblatex-docbook-acknowledgements-and-pdf-output/

https://blog.lnx.cx/2013/03/27/dblatex-docbook-acknowledgements-and-pdf-output/
https://blog.lnx.cx/2013/03/27/dblatex-docbook-acknowledgements-and-pdf-output/

Thank you Jon Connell, Henry Graham, and Jyoti Sabharwal for editing! Mark Dalrymple,
JasonHibbets, andChristopherNegus, thanks for the reviews andgeneral authoring/pub-
lishing advice and encouragement.

Obligatory shout-outs to Norman Walsh, the man I consider the living personification of
DocBook XML ⁵ , and Bob Stayton, author of DocBook XSL: The Complete Guide ⁶ .

Thank youWikipedia contributor MistWiz for creating the original image, Figure B.1, “Disk
DriveComponents” [67], used in theappendix. Also, thanks toWikipediacontributorHeron2
for making later updates. The disk components image featured in this book has subse-
quent changes I personally made. Image used and remixed according to permissions de-
tailed in the Licensing section of the image’s Wikipedia page ⁷ .

To my wife, Alicia, thanks for making me so happy and keeping me sane. Thank you for
encouragingme towork on this bookwhen I didn’t want to. And, thank you for everything
else.

Finally, my biggest “thanks” goes to David Krovich. A mentor, friend, and button-pusher
for many years now. You always encouraged me to be better than I was. Without the op-
portunities you offered me, and the radical influence you had on my life, this book would
never have even reached conception. Truth be told, Chapter 2, The Virtual Disk Cookbook
[7] section is mostly a merge and refresh of a lot of the notes I took, and staff documen-
tation I wrote, working on one of our provisioning projects. Those notes became the first
chapters of this book.

It waswhile working under your instruction that I discoveredmy passion for documenting
everything I learned. This book is a testament to that passion. Thanks, Kro.

⁵ DocBook Homepage: http://www.docbook.org/
⁶ Read DocBook XSL: The Complete Guide online: http://www.sagehill.net/docbookxsl/

index.html
⁷ Original Disk Components Image: https://en.wikipedia.org/wiki/File:

Disk-structure2.svg

http://www.docbook.org/
http://www.sagehill.net/docbookxsl/index.html
http://www.sagehill.net/docbookxsl/index.html
https://en.wikipedia.org/wiki/File:Disk-structure2.svg
https://en.wikipedia.org/wiki/File:Disk-structure2.svg

The Linux Sysadmins Guide to Virtual Disks 3 / 73

Chapter 1

Introduction

1.1 Introduction

I was motivated to write this book because I felt the quality of the information regarding
commonly used functionality in virtual disk operation was lacking certain specific clear
examples. The information that is available is not contained in a central location. Some
concepts of the qemu system aren’t covered at all. FAQs lead on to having an answer to
a particular query, but many lead you to off site resources, some of which are no longer
available on the Internet.

What I hope to provide is a book which will demonstrate the core concepts of virtual disk
management. Thisbookwill concern itself primarilywith theqemu-img tool andcommon
GNU/Linux disk utility tools like fdisk, parted, and resize2fs. Most importantly to me, in
the case of non-trivial examples, I hope to identify what the relevant technical concepts
are and how they work up to the final result of each example.

1.2 Typographical Conventions

The following describes the typographical conventions used throughout this book.

References
References to other sections will look like this: Chapter 7, Troubleshooting/FAQs
[57]. The format is: Chapter/section title followed by the page number in [brackets].

Footnotes
References to footnotes¹ appear as small superscripted numbers flowing inlinewith
the current discussion.

Terminology & Emphasis
The introduction of a new or alternative term, as well as phrases which have been
given emphasis, are formatted in italics:

• The disk image has been sparsified

• You should alwayswear clean socks

Commands & Options
The name of commands are formatted in bold, an option you would give to a com-
mand is formatted in a monospaced sequence, for example: give the -ltrsh op-
tions to the ls command.

Filesystem Paths
Names or paths to files, directories, and devices on the filesystem are formatted in
a monospaced sequence: /dev/loop0p1

Examples
Examples are formatted in a gray box with a title bar which provides the example
number and title.

Example 1.1 An example of examples

[~/vdg] 18:38:17 (master)
$ cat /etc/redhat-release
Fedora release 19 (Schrödinger’s Cat)

Notes, Warnings, and Other Important Information

Note
A note will provide additional information relevant to the current discus-
sion.

¹ Hello! I am a footnote.

The Linux Sysadmins Guide to Virtual Disks 5 / 73

Important
Warningsandother important informationwhichyoushouldknowbefore
executing any commands will appear in an admonition such as this.

1.3 Units & Prefixes

Throughout this book you will see file sizes specified with an assortment of units. For ex-
ample: 42 kB, 42 Mb, 42 GiB, 42 G, 42 GiB.

Without an explanation this may seem confusing, random, and inconsistent. However,
there is a method to this madness:

1. The unit used in discussion preceding/following an example is consistent with the
convention used in the example

2. Without any scope or context, binary prefixes are used (e.g., 1024 KiB, 35565 MiB)

For additional literature on why this necessary, I refer you to Appendix A, Appendix: Man
Pages [64]

1.4 Getting Help/Feedback

If you find a typographical or any other error in this book, or if you have thought of a way
to make this book better, I would love to hear from you! Please submit a report in GitHub
² . You can also read or clone the entire book’s DocBook 5.1 XML source from GitHub.

If you have a suggestion for improving the book, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of
the surrounding text so I can find it easily. I also recommend you review the suggestions
in Chapter 7, Troubleshooting/FAQs [57].

If you’re submitting an error with an example, please try and include as much relevant
information about your setup as possible. This includes (but is not limited to): your op-
erating system and version, the version of the software the example happens with, if you
are running the command as the root user or not, and the exact commands to run to re-
produce the error.

² https://github.com/tbielawa/Virtual-Disk-Guide/issues

https://github.com/tbielawa/Virtual-Disk-Guide/issues

1.5 Updates and Alternative Formats

The latest version of this book is always available online for free in the following digital
formats:

• PDF

• HTML Single Page

If you find this book useful, please consider supporting the author by purchasing a hard-
copy. Visit the publisher’s website at http://scribesguides.com/ for purchasing
options and links to alternative formats.

This book was generated from commit 98bafa1 ³ on Sun 13 Mar 2016 11:41:51 PM EDT.

1.6 About The Author

Tim Bielawa (or Shaggy if you knew him in college) has been a system administrator since
his humble beginnings in 2007. Back then he was working in the Systems Staff Group in
the West Virginia University Computer Science Department.

Now-a-days Timworks at Red Hat, Inc., makers of Red Hat Enterprise Linux, and sponsors
of the Fedora Project. Tim has been involved in Open Source communities for around a
decade, and a contributor/maintainer for about half that time. In his spare time he enjoys
writing documentation ⁴ , solving interesting problems (and blogging ⁵ about them), and
building things ⁶ .

bitmath is a Python library Tim wrote which simplifies a lot of work required to ma-
nipulate (add, subtract, convert) prefix units (MiB, kB, TB, etc). Much of the inspiration
for writing the bitmath library came directly from working on this book. bitmath is
loaded with features: converting between units, arithmetic, best human-readable repre-
sentation, rich comparison, sorting, the list of features goes on. Check out the bitmath
docs ⁷ or GitHub project ⁸ for more information on getting started.

³ https://github.com/tbielawa/Virtual-Disk-Guide/commit/98bafa1
⁴ Docs on lnx.cx: http://lnx.cx/docs/
⁵ My blog, Technitribe: https://blog.lnx.cx
⁶ GitHub: tbielawa https://github.com/tbielawa/
⁷ Read the bitmath docs online: https://bitmath.readthedocs.org/en/latest/
⁸ bitmath on GitHub.com: https://github.com/tbielawa/bitmath

http://scribesguides.com/
https://github.com/tbielawa/Virtual-Disk-Guide/commit/98bafa1
https://github.com/tbielawa/Virtual-Disk-Guide/commit/98bafa1
http://lnx.cx/docs/
https://blog.lnx.cx
https://github.com/tbielawa/
https://bitmath.readthedocs.org/en/latest/
https://github.com/tbielawa/bitmath

The Linux Sysadmins Guide to Virtual Disks 7 / 73

Chapter 2

The Virtual Disk Cookbook

In this section we’re just going to cover things you’ll find yourself needing to do from time
to time. It’s assumed that you’re comfortable with the concepts already and don’t need
everything explained. Theory and conceptswill be covered later on inChapter 3, DiskCon-
cepts [30].

2.1 Creating Simple Images

The simplest operation you cando (next to deleting an image) is creating anewvirtual disk
image. Depending on what format you choose there are several options available when
creating an image:

• Encryption

• Compression

• Backing images ¹

• Snapshots

In this example we will start simple and only show how to create basic images in different
formats. Each image we create will appear to a virtual machine as a drive with 10GB of
capacity.

¹ Creating Disks with Backing Images: Section 2.5, “Creating Disks with Backing Images” [26]

Example 2.1 Using qemu-img to Create RAW Images

$ qemu-img create webserver.raw 10G
Formatting ’webserver.raw’, fmt=raw, size=10485760 kB

From the fmt attribute in the output above we can see that the format of the virtual disk
we created is of typeRAW², this is the default when usingqemu-img. Where it sayssize=
... we see that the disk was created with a capacity of 10485760 kB, or 10gB.

2.2 Resizing Disk Images

In this section we’ll resize two different virtual disk images. The first will be a RAW image,
the other will be a QCOW2 image. The RAW section is more involved in that we’ll do all of
the resizing operations outside of a virtual machine. In the QCOW2 section I’ll show the
(simpler) steps which take place both outside and inside of a virtual machine.

2.2.1 Resizing RAW Images

In this part we’ll add 2GiB to a disk image I created of a 1GiB USB thumbdrive ³ The thumb
drive has two roughly equal sized partitions, both are EXT4.
At the end of this section we’ll have done the following:

• Enlarged the disk by 2GiB with qemu-img

• Shifted the the second partition 1024MiB right into the new space with gparted

• Enlarged the first partition by about 1GiB with gparted

• Resized the first filesystem to use the new space on its partition with resize2fs

² Section 5.1, “RAW” [49]
³ See Section 2.7, “Cloning a Physical Disk” [28] for instructions on how to do this yourself.

The Linux Sysadmins Guide to Virtual Disks 9 / 73

Example 2.2 Resize a RAW Image

qemu-img info thumb_drive_resize.raw
image: thumb_drive_resize.raw
file format: raw
virtual size: 966M (1012924416 bytes)
disk size: 914M

qemu-img resize thumb_drive_resize.raw +2G
Image resized.

qemu-img info thumb_drive_resize.raw
image: thumb_drive_resize.raw
file format: raw
virtual size: 2.9G (3160408064 bytes)
disk size: 914M

Next we need to create device maps and devices linking to the enlarged disk image so
we may interact with it. We will use the kpartx command ⁴ to automatically create loop
devices ⁵ ⁶ and device maps to the partitions. The -a option means we’re adding parti-
tionmappings and the -v optionmeans to do it with increased verbosity so we know the
names of the created devices.

Example 2.3 Create devices with kpartx
kpartx -av ./thumb_drive_resize.raw
add map loop0p1 (253:8): 0 3082432 linear /dev/loop0 2048
add map loop0p2 (253:9): 0 996030 linear /dev/loop0 3084480

dmsetup ls | grep loop
loop0p2 (253:9)
loop0p1 (253:8)

Now we’re going to use gparted to resize the partitions in the disk image. There are two
important things to keep in mind:

⁴ For more information on the kpartx command, see Chapter 4, Helper Utilities [44]
⁵ Don’t confuse the oftenmisused term loopback devicewith a loop device. In networking a loopback device

refers to a virtual interface used for routing within a host. localhost is the standard hostname given to the
loopback address 127.0.0.1. See rfc1700 Assigned Numbers for additional information (http://tools.
ietf.org/html/rfc1700).

⁶ We’ll revisit loop devices in Chapter 3, Disk Concepts [30]

http://tools.ietf.org/html/rfc1700
http://tools.ietf.org/html/rfc1700

1. gparted expects to find the loop0p* devices in /dev/, not in /dev/mapper/

2. gpartedwon’t list loop devices in its device selection menu

Whenwe rankpartx it createdsymbolic links to thenewdevices (/dev/dm-*)whichmap
to the partitions on /dev/loop0. We can use this information to create the symlinks
necessary for gparted to locate loop0p*.

Example 2.4 Create the symbolic links

ls -l /dev/mapper/loop0p*
lrwxrwxrwx 1 root root 7 Jan 21 15:07 /dev/mapper/loop0p1 -> ../ ←↩

dm-8
lrwxrwxrwx 1 root root 7 Jan 21 15:07 /dev/mapper/loop0p2 -> ../ ←↩

dm-9

ln -s /dev/dm-8 /dev/loop0p1
ln -s /dev/dm-9 /dev/loop0p2

ls -l /dev/loop0p[12]
lrwxrwxrwx 1 root root 9 Jan 21 15:23 /dev/loop0p1 -> /dev/dm-8
lrwxrwxrwx 1 root root 9 Jan 21 15:23 /dev/loop0p2 -> /dev/dm-9

Once the symlinks are created we can run gparted from the command line with /dev/
loop0 as the device argument.

Example 2.5 Run gparted
gparted /dev/loop0
======================
libparted : 3.0
======================

Now gparted should open and show the two existing partitions, as well as the 2GiB of
unallocated space we just added to the image:

The Linux Sysadmins Guide to Virtual Disks 11 / 73

Figure 2.1: Welcome to gparted

Right click the second partition, loop0p2, and select the Resize/Move option:

Figure 2.2: Resize/Move loop0p2

We’re not going to resize the second partition. We just want tomake room for the first par-

tition to expand into. Enter 1024 into the Free space preceding (MiB) box. That will move
this partition to the right far enough to leave the first partition enough room to expand to
1024 MiB. Also, in the Align to drop-downmenu select Cylinder ⁷ :

Figure 2.3: Moving loop0p2

gpartedwill now show 1 operation pending:

⁷ On aligning Partitions: Section B.3, “The Master Boot Record” [69]

The Linux Sysadmins Guide to Virtual Disks 13 / 73

Figure 2.4: Pending move operation

Now right click the first partition and select Resize/Move like we did with the second par-
tition. We’ll make the first partition use the free space preceding the second partition by
setting the Free space following (MiB) inputbox to0. Again, in theAlign todrop-downmenu
select Cylinder:

Figure 2.5: Resize loop0p1

There is a summary of the two pending actions below the partition table. Click the green
check mark button to apply the changes:

Figure 2.6: Apply the changes

The Linux Sysadmins Guide to Virtual Disks 15 / 73

After you click apply you’ll get this confirmation dialog:

Figure 2.7: Scary warning!

Once you click apply again this windowwill show the progress:

Figure 2.8: Progress happening

You should see this screen if there were no errors:

Figure 2.9: No errors!

All done! Click Close to return to the main gparted screen:

The Linux Sysadmins Guide to Virtual Disks 17 / 73

Figure 2.10: gparted has resized our partitions

But wait, what’s this on the last screen here? gparted says loop0p1 is using 1.02GiB of
1.47GiB. That can’t be right. Before resizing the partition gparted saidloop0p1was only
using 25.54MiB out of 482.56MiB. Let’s take a look at it on the command line:

Example 2.6 Compare gparted and df output
mount /dev/loop0p1 /mnt/vdg01

df -h /mnt/vdg01
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/loop0p1 468M 11M 433M 3% /mnt/vdg01

du -sh /mnt/vdg01
14K /mnt/vdg01

umount -l /mnt/vdg01

All of that is incorrect too, as if nothing we did in gparted had an effect. What’s going on
here?

After the partitionswere resized the partition tablewas updatedwith the new information
but we never updated the devicemaps in the kernel. The kpartx command also accepts a
-u option to update partitions mappings. Let’s try that and see if it fixes our problem:

Example 2.7 Create device maps with kpartx
kpartx -uv /dev/loop0
add map loop0p1 (253:8): 0 3082432 linear /dev/loop0 2048
add map loop0p2 (253:9): 0 996030 linear /dev/loop0 3084480

The partition sizes and offsets reflect the changes we made, but mounting the first parti-
tion still doesn’t show the added capacity:

Example 2.8 Still missing added capacity
mount /dev/loop0p1 /mnt/vdg01

df -h /mnt/vdg01
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/loop0p1 468M 11M 433M 3% /mnt/vdg01

We’ve already resized the partition, but we haven’t resized the filesystem on the partition.
That’s the last thing we have to do to finish this whole resizing operation. We’ll use the
resize2fs command and let it automatically resize the filesystem to fill the available space
on the /dev/loop0p1 partition.

Example 2.9 Resize the filesystemwith resize2fs
resize2fs /dev/loop0p1
resize2fs 1.42.3 (14-May-2012)
Resizing the filesystem on /dev/loop0p1 to 1541216 (1k) blocks.
The filesystem on /dev/loop0p1 is now 1541216 blocks long.

mount /dev/loop0p1 /mnt/vdg01

df -h /mnt/vdg01
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/loop0p1 1.5G 11M 1.4G 1% /mnt/vdg01

Don’t forget to clean up those lingering symlinks wemade earlier:

Example 2.10 Cleanup lingering symlinks
rm -f /dev/loop0p[12]

The Linux Sysadmins Guide to Virtual Disks 19 / 73

Note
The resize2fs command can also shrink partitions, print theminimumpossible
size, and a couple other things. Checkman 8 resize2fs for more information.

2.2.2 Resizing QCOW2 Images

In this section we’ll resize a QCOW2 image, making it 5GB larger. This process will differ
from theRAW image resizing section in thatwe’ll do someoperations outside of the virtual
machine and some operations inside of the virtual machine.

The virtualmachinewe’ll beworkingwith is calledf18, which is runningFedora Linux
and has no LVMmanaged partitions. The disk image for this virtual machine is located at
/var/lib/libvirt/images/f18.qcow2, and the root partition is vda3.
Outside of the virtual machine the disk looks like this:

Example 2.11 Examine f18.qcow2 on the host

qemu-img info f18.qcow2
image: f18.qcow2
file format: qcow2
virtual size: 12G (12884901888 bytes)
disk size: 4.7G
cluster_size: 65536

Inside of the virtual machine the disk and root partition look like this:

Example 2.12 Examine vda in the guest

parted /dev/vda print
Model: Virtio Block Device (virtblk)
Disk /dev/vda: 12.9GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 525MB 524MB primary ext4 boot
2 525MB 4686MB 4161MB primary linux-swap(v1)
3 4686MB 12.9GB 8199MB primary ext4

df -h /
Filesystem Size Used Avail Use% Mounted on
/dev/vda3 7.6G 3.8G 3.4G 53% /

Warning
Before we begin: make sure you shutdown any virtual machines the disk might
be attached to! For example: virsh shutdown f18

Once the virtualmachine is shutdown theprocess for resizingQCOW2 images starts similar
to the process for resizing RAW images. Use the qemu-img resize sub-command, specify
the disk to operate on (f18.qcow2), and howmuch to increase the size by (+5G):

Example 2.13 Resize a QCOW2 Image

qemu-img resize f18.qcow2 +5G
Image resized.

qemu-img info f18.qcow2
image: f18.qcow2
file format: qcow2
virtual size: 17G (18253611008 bytes)
disk size: 4.7G
cluster_size: 65536

Once you’ve resized the disk image you can turn the virtualmachine back on, for example:
virsh start f18

Important
The following steps happen inside of the running virtual machine.

Once the machine is back online we can resize the partition with the fdisk command.
Technical note here: when we “resize” the partition with fdisk what we’re actually doing

The Linux Sysadmins Guide to Virtual Disks 21 / 73

is deleting the partition and then re-creating it starting at the same position ⁸ .

Example 2.14 Resize /dev/vdawith parted
fdisk /dev/vda
Command (m for help): p

Disk /dev/vda: 18.3 GB, 18253611008 bytes, 35651584 sectors
Units = cylinders of 1008 * 512 = 516096 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00020891

Device Boot Start End Blocks Id System
/dev/vda1 * 3 1018 512000 83 Linux
/dev/vda2 1018 9080 4063232 82 Linux ←↩

swap / Solaris
/dev/vda3 9080 24967 8006656 83 Linux

Command (m for help): d
Partition number (1-4): 3
Partition 3 is deleted

Command (m for help): n
Partition type:

p primary (2 primary, 0 extended, 2 free)
e extended

Select (default p): p
Partition number (1-4, default 3): 3
First cylinder (9080-35368, default 9080):
Using default value 9080
Last cylinder, +cylinders or +size{K,M,G} (9080-35368, default ←↩

35368):
Using default value 35368
Partition 3 of type Linux and of size 12.7 GiB is set

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

⁸ While performing research for this section, I found some examples where the parted resize sub-command
was used. As of parted version 2.4 the resize subcommand no longer exists.

WARNING: Re-reading the partition table failed with error 16: ←↩
Device or resource busy.

The kernel still uses the old table. The new table will be used ←↩
at

the next reboot or after you run partprobe(8) or kpartx(8)
Syncing disks.

Note
In the above examplewe use the defaults for someof the newpartition creation
prompts. Thedefaultsworkout to selecting the first and last available cylinders,
respectively.

Restart the virtual machine again. Now we can see the partition size has increased from
7.6G to 13.6GB:

Example 2.15 New capacity now detected

parted /dev/vda print
Model: Virtio Block Device (virtblk)
Disk /dev/vda: 18.3GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 525MB 524MB primary ext4 boot
2 525MB 4686MB 4161MB primary linux-swap(v1)
3 4686MB 18.3GB 13.6GB primary ext4

Just like when we resized the filesystem on the RAW disk image we’ll use the resize2fs
command inside the QCOW2 image. The root partition, /dev/vda3, is the last partition
on the disk and is followed by free space which we’ll grow it into:

Example 2.16 Grow the filesystem on /dev/vda3
resize2fs /dev/vda3
resize2fs 1.42.5 (29-Jul-2012)
Filesystem at /dev/vda3 is mounted on /; on-line resizing ←↩

required

The Linux Sysadmins Guide to Virtual Disks 23 / 73

old_desc_blocks = 1, new_desc_blocks = 1
The filesystem on /dev/vda3 is now 3312304 blocks long.

df -h /
Filesystem Size Used Avail Use% Mounted on
/dev/vda3 13G 3.6G 8.3G 31% /

2.3 Query an Image for Information

This section is going to showhow to query somebasic information froma virtual disk. The
tools of the trade here are going to be ls to check disk usage, file for a quick check of the
types, and qemu-img for more in-depth information. ⁹

Example 2.17 Querying an Image

$ ls -lhs
total 136K
136K -rw-r-----. 1 tim tim 256K May 8 18:00 image-qcow.qcow2

0 -rw-r-----. 1 tim tim 10G May 8 18:00 image-raw.raw

$ file image-qcow.qcow2 image-raw.raw
image-qcow.qcow2: Qemu Image, Format: Qcow , Version: 2
image-raw.raw: data

$ qemu-img info image-qcow.qcow2
image: image-qcow.qcow2
file format: qcow2
virtual size: 10G (10737418240 bytes)
disk size: 136K
cluster_size: 65536

$ qemu-img info image-raw.raw
image: image-raw.raw
file format: raw
virtual size: 10G (10737418240 bytes)
disk size: 0

⁹ The qemu-img command manipulates virtual machine disks and is part of the QEMU suite. “QEMU” is a
“Quick EMUlator”. It emulates hardware for virtual machines.

Note
These images are freshly created and don’t have any information on them yet.
Both were created to be 10G images.

The interesting informationwe can get fromusing ls -lhs is how the files are actually sized.
What’s goodabout theseRAWdisks is that youdon’t needany special kindof tools to know
how large thedisk is internally. image-raw.rawappears tobe10Gbutdoesn’t haveany
actual blocks allocated to it yet. It is literally an empty file. The RAW image should always
match it’s reported file size on the host OS.

Our QCOW, on the other hand, is being deceptive and concealing it’s true size. QCOWswill
grow to theirmaximum size over time. Whatmakes it different fromour RAW image in this
case is that it already has blocks allocated to it (that information is in the left-most column
and comes from the -s flag to ls). The allocated space is overhead from the meta-data
associated with the QCOW image format.

The file command tells us immediately what it thinks each file is. This is another query
which is simple to perform andwe can run on any systemwithout special tools. In the last
example we see it correctly reportsimage-qcow.qcow2’s type. Unfortunately, without
any content, all it can tell us about image-raw.raw is that it’s data.

Note
Its worth mentioning that RAW image types will be reported by file as x86 b
oot sector, code offset 0xb8 once given a filesystem label and a
partition table.

Using the qemu-img command we can get more detailed information about the disk im-
ages in a clearly presented format.

With qemu-img it’s clear that image-qcow.qcow2 is a QCOW2 type image and is only
136K on disk and internally (the virtual size field) is a 10G disk image. If the QCOW had a
backing image the path to that file would be shown here as an additional field.

For the RAW image there is no new information here that we didn’t already get from the ls
command.

The Linux Sysadmins Guide to Virtual Disks 25 / 73

2.4 Converting Between RAW and QCOW2

2.4.1 Convert an Image from RAW to QCOW2

RAW images, though simple to work with, carry the disadvantage of increased disk usage
on the host OS. One option we have is to convert the image into the QCOW2 format which
uses zlib¹⁰ compression and optionally allows your disks to be secured with 128 bit AES
encryption¹¹.

Example 2.18 RAW to QCOW2
$ qemu-img convert -O qcow2 original-image.raw image-converted. ←↩

qcow

$ qemu-img info image-converted.qcow
image: image-converted.qcow
file format: qcow2
virtual size: 10G (10737418240 bytes)
disk size: 140K
cluster_size: 65536

2.4.2 Convert an Image fromQCOW2 to RAW

Here’s how to do the last example, but in reverse.

Example 2.19 QCOW2 to RAW
$ qemu-img convert -O raw image-converted.qcow image-converted- ←↩

from-qcow2.raw

$ qemu-img info image-converted-from-qcow2.raw
image: image-converted-from-qcow2.raw
file format: raw
virtual size: 10G (10737418240 bytes)
disk size: 0

¹⁰ From the zlib homepage (http://zlib.net/): zlib is designed to be a free, general-purpose, legally
unencumbered— that is, not covered by any patents— lossless data-compression library for use on virtually any
computer hardware and operating system.

¹¹ For more information on AES encryption, see FIPS PUB 197: Advanced Encryption Standard - http://
csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://zlib.net/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Note
When converted to the RAW format the image has the potential to take upmuch
more disk space than before. RAW images may use up up their allocated space
immediately, whereas QCOW images will grow to their pre-determined maxi-
mum size over time.

2.5 Creating Disks with Backing Images

A few years ago I found out about backing images (or “base-images”)¹³. Back then I was
doing lots of development on host provisioning tools and needed to be able to quickly
revertmachines I wasworking on to a desired initial state. In this use case backing images
were especially handywhenworking on features that frequently destroyed themachine if
it didn’t work right.

Snapshotswere anoption, but how theyworkedwasn’t documented verywell at the time.
Iwentwithbacking images instead, as theyworkedperfectly forwhat I needed themtodo.
I could work iteratively and commit changes in the COW image ¹² (copy-on-write) back to
the base-image ¹³ when I was satisfied. I also could use the same base-image for multiple
COWs at once. This meant that other people on my team working on the same project
could all use the same base-image.

Example 2.20 Creating a Disk with a Backing Image

$ mkdir base-images
$ mkdir webserver01
$ cd base-images

$ qemu-img create -f qcow2 image-webserver-base.qcow2 10G
Formatting ’image-webserver-base.qcow2’, fmt=qcow2 size ←↩

=10737418240 encryption=off cluster_size=0
$ cd ../webserver01

¹² In this section whenwe refer to a COW image it is not apropos the COW (copy-on-write) disk format. Saying
COW only serves to help make a distinction between the read-only base-image and the image that changes are
copied to on writing.

¹³ The terms “base-image” and “backing image” are used interchangeably

The Linux Sysadmins Guide to Virtual Disks 27 / 73

$ qemu-img create -b /srv/images/base-images/image-webserver-base ←↩
.qcow2 -f qcow2 image-webserver-devel.qcow2

Formatting ’image-webserver-devel.qcow2’, fmt=qcow2 size ←↩
=10737418240 backing_file=’/srv/images/base-images/image- ←↩
webserver-base.qcow2’ encryption=off cluster_size=0

$ qemu-img info image-webserver-devel.qcow2
image: image-webserver-devel.qcow2
file format: qcow2
virtual size: 10G (10737418240 bytes)
disk size: 136K
cluster_size: 65536
backing file: /srv/images/base-images/image-webserver-base.qcow2 ←↩

(actual path: /srv/images/base-images/image-webserver-base. ←↩
qcow2)

STEPS IN DETAIL

1. I consider it bad practice to a bunch of bunch of disk images in a directory so we
made two directories here. /srv/images/base-images/ to hold all the base-
images on this system and /srv/images/webserver01 to later hold the disk
assigned to the virtual machine.

2. Nextwego into thebase imagesdirectoryandcreateasmall 10G image, type: QCOW2.

3. Normally what we used to do at this point is create a virtual machine that uses this
disk for it’s primary drive. It would get a base OS provisioned on it and any other
tweaks we needed there each time it was wiped.

4. Once the machine was what we wanted in a “Golden Master” it was shutdown and
the backing image would bemade read-only.

5. The next step was creating the copy-on-write (COW) image. See how in the example
we give the -b option with the full path to the base-image¹⁴? Also note that no size
is given after the file name. Size is implicitly the size of the disks backing image.

6. With the image preparation completewewouldmodify the virtualmachines config-
uration and set its primary disk drive to the COW in the webserver01 directory.

¹⁴ Some versions of qemu-img can not handle relative paths)

2.6 Comitting changes to a backing image

Sometimes we would want to update a base-image to resemble the contents of an at-
tached COW image. Maybe we wanted to make the latest system updates a part of the
base image, or a configuration setting needed to be updated. This was as simple as mak-
ing the base-image read-write, and running qemu-img commit on the created file.

Important
You should turn off or suspend the virtual machine when running the commit
command. Failure to do so could result in data corruption.

Example 2.21 Commiting changes

qemu-img create -f qcow2 /srv/base-images/base-image01.qcow2 10 ←↩
G

Formatting ’/srv/base-images/base-image01.qcow2’, fmt=qcow2 size ←↩
=10737418240 encryption=off cluster_size=65536

qemu-img create -b /srv/base-images/base-image01.qcow2 -f qcow2 ←↩
/srv/images/with-backing-image.qcow2

Formatting ’/srv/images/with-backing-image.qcow2’, fmt=qcow2 size ←↩
=10737418240 backing_file=’/srv/base-images/base-image01. ←↩
qcow2’ encryption=off cluster_size=65536

qemu-img commit /srv/images/with-backing-image.qcow2
Image committed.

2.7 Cloning a Physical Disk

“ Everything in the UNIX system is a file. ”

— The UNIX Programming Environment - Chapter 2

I never fully grasped the “everything’s a file” concept until I tried (expecting to fail) to use
the qemu-img convert sub-command to create a virtual disk image of an actual hard

The Linux Sysadmins Guide to Virtual Disks 29 / 73

drive. This is possible in part due to the philosophy laid down by Dennis Ritchie and Ken
Thompsonwhen they first created UNIX: everything’s treated as a file. The synopsis of the
convert sub-command is below.

qemu-img convert [-c] [-f fmt] [-O output_fmt] [-o options] filename [filena
me2...] output_filename

In this section we’ll look at a standard 1GB USB thumb drive and then clone it into a disk
image. Using parted, here’s what that disk looks like to the host system:

Example 2.22 Thumb Drive Properties

parted /dev/sdb print
Model: Generic Flash Disk (scsi)
Disk /dev/sdb: 1013MB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
1 31.2kB 506MB 506MB primary boot
2 506MB 1013MB 507MB primary

To convert the thumb drive we’re first going to unmount the drive, then use the qemu-
img command to perform the actual conversion. While unmounting the drive I use the-l
optionwhichmeans tounmount lazily, i.e., towait until there is no activity goingonbefore
attempting to unmount. ¹⁵

Example 2.23 Conversion Steps

umount -l /dev/sdb1
time qemu-img convert -O raw /dev/sdb ./thumb_drive.raw

real 1m8.206s
user 0m0.161s
sys 0m2.593s

¹⁵ See also: Chapter 7, Troubleshooting/FAQs [57]

Chapter 3

Disk Concepts

The best way to learn is by doing, so to learn the concepts of virtual disks we’re going to
create a 1GiB ¹ virtual disk from scratch. This information is applicable to the topic of disks
in general, it’s value is not limited to virtual disks.

What makes virtual disks any different from actual hard drives? We’ll examine this ques-
tion by creating a virtual disk from scratch.

What does your operating system think a disk drive is? I have a 320 GB SATA drive in my
computer which is represented in Linux as the file /dev/sda. Using file, stat and fdisk
we’ll see what Linux thinks the /dev/sda file is.

Let’s startoutby lookingatwhata regulardrive looks like toouroperatingsystem. Through-
out this section the regular drive we’ll be comparing our findings against will be a 320G ²
SATA hard drive drive that Linux references as /dev/sda. The following example shows
some basic information about the device.

Example 3.1 Regular Disk Drive
$ file /dev/sda
/dev/sda: block special

$ stat /dev/sda

¹ Check out Appendix A, Appendix: Man Pages [64] for a review of binary/decimal prefixes if “GiB” is foreign
to you.

² If you’re wondering why I didn’t say 320GiB here, it’s because “320GB” is the capacity as defined by the
manufacturer.

The Linux Sysadmins Guide to Virtual Disks 31 / 73

File: ‘/dev/sda’
Size: 0 Blocks: 0 IO Block: 4096 block ←↩

special file
Device: 5h/5d Inode: 5217 Links: 1 ←↩

Device type: 8,0
Access: (0660/brw-rw----) Uid: (0/ root) Gid: (6/ ←↩

disk)
Access: 2010-09-15 01:09:02.060722589 -0400
Modify: 2010-09-12 11:03:20.831372852 -0400
Change: 2010-09-12 11:03:26.226369247 -0400

$ sudo fdisk -l /dev/sda
Disk /dev/sda: 320.1 GB, 320071851520 bytes
255 heads, 63 sectors/track, 38913 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x12031202

Device Boot Start End Blocks Id System
/dev/sda1 1 25496 204796588+ 7 HPFS/NTFS
/dev/sda2 25497 31870 51199155 83 Linux
/dev/sda3 31871 33086 9767520 82 Linux ←↩

swap / Solaris
/dev/sda4 33087 38913 46805377+ 5 Extended
/dev/sda5 * 33087 38913 46805346 83 Linux

The term block is generally interchangeable with the term sector. The only difference in
their meaning is contextual. It’s common usage to say block when referring to the data
being referencedand touse sectorwhen speakingaboutdisk geometry. Officially the term
datablockwasdefinedbyANSI ASCX3 inANSI X3.221-199x - ATAttachment Interface forDisk
Drives (ATA-1) ³ ⁴ §3.1.3 as:

data block
This term describes a data transfer, and is typically a single sector […]

Storage units need to be clearly defined. Luckily some very smart people⁵ already took
care of that. The International Electrotechnical Commission ⁶ defined binary prefixes for

³ ANSI X3.221-199x Working Draft: http://www.t10.org/t13/project/d0791r4c-ATA-1.pdf
⁴ Technical Committee (T13) Homepage: http://www.t10.org/t13/
⁵ IEC 60027-2, Second edition, 2000-11, Letter symbols to be used in electrical technology - Part 2: Telecommu-

nications and electronics: http://webstore.iec.ch/webstore/webstore.nsf/artnum/034558
⁶ The IEEE also adopted this method for unit prefixes. Within the IEEE it is known as IEEE Std 1541-2002:

http://ieeexplore.ieee.org/servlet/opac?punumber=5254929

http://www.t10.org/t13/project/d0791r4c-ATA-1.pdf
http://www.t10.org/t13/
http://webstore.iec.ch/webstore/webstore.nsf/artnum/034558
http://ieeexplore.ieee.org/servlet/opac?punumber=5254929

use in the fields of dataprocessing anddata transmission. Beloware someprefixes as they
apply to bytes. See Appendix A, Appendix: Man Pages [64] for the full prefix listing.

Abbrev. Measurement Name
1B = 8 bits The byte
1KiB = 1B * 210 The kibibyte
1MiB = 1KiB * 210 Themebibyte
1GiB = 1MiB * 210 The gibibyte

3.1 Creating a 1GiB virtual disk from scratch

3.1.1 Background on the dd command

We’ll use the dd command to create the file that represents our virtual disk. Other higher
level tools like qemu-img exist to do similar things but using dd will give us a deeper in-
sight into what’s going on. ddwill only be used in the introductory part of this document,
later on we will use the qemu-img command almost exclusively.

If we’re creating a 1GiB disk that means the file needs to be exactly 230 bytes in size. By
default dd operates in block sized chunks. This means that to create 230 bytes it needs to
push a calculable number of these chunks into our target disk file. This number is referred
to as the count. To calculate the proper count setting we need only to divide the total
number of bytes required by the size of a each block. The block size is given to ddwith the
bs option. It specifies the block size in bytes. If not explicitly defined, it defaults to 512
byte blocks (29).

count = 230 / 2 9 = 1,073,741,824/512 = 2,097,152

EQUATION 3.1: Calculating the Count

Weneed to fill the filewith something that has a negligible value. OnUnix systems thebest
thing to use is the output from /dev/zero (a special character device, like a keyboard).
We specify /dev/zero as our input file to dd by using the if option.

The Linux Sysadmins Guide to Virtual Disks 33 / 73

Note
/dev/zero doesn’t provide endless zero characters. It actually provides end-
less NUL control characters(ˆ@ in Caret Notation). The NUL control character
has the octal value 000. The actual ASCII “zero” character has the octal value
060.

NUL being a control character ⁷ means it’s a non-printing character (it doesn’t represent a
written symbol), so if you want to identify it you can use cat like this to print 5 NUL char-
acters in Caret Notation ⁸:

$ dd if=/dev/zero bs=1 count=5 2>/dev/null | cat -v
^@^@^@^@^@

You can also convert the output from /dev/zero into ASCII 0 characters like this:

$ if=/dev/zero bs=1 count=5 2>/dev/null | tr ”\0” ”\60”
00000

3.1.2 Running dd

With the information from the preceding sectionswe can now create the file that will soon
be a virtual disk. The file we create will be called disk1.raw and filled with 2097152
blocks of NUL characters from /dev/zero. Here’s the command:

Example 3.2 Running the dd command
$ dd if=/dev/zero of=disk1.raw bs=512 count=2097152

Now that you know what /dev/zero is it’s obvious this is just a file containing 230 bytes
(1GiB) of data, each byte literally having the value 0.

3.1.3 Examining the Created File

Like in Example 3.1, “Regular Disk Drive” [30] let’s take a look at the file we created from
the operating system’s point of view.

⁷ Wikipedia.org - Control Characters: http://en.wikipedia.org/wiki/Control_code
⁸ Wikipedia.org - Caret Notation: http://en.wikipedia.org/wiki/Caret_notation

http://en.wikipedia.org/wiki/Control_code
http://en.wikipedia.org/wiki/Caret_notation

Example 3.3 Examining the Created File

$ dd if=/dev/zero of=disk1.raw bs=512 count=2097152
2097152+0 records in
2097152+0 records out
1073741824 bytes (1.1 GB) copied, 10.8062 s, 99.4 MB/s

$ file disk1.raw
disk1.raw: data

$ stat disk1.raw
File: ‘disk1.raw’
Size: 1073741824 Blocks: 2097152 IO Block: 4096 regular ←↩

file
Device: 805h/2053d Inode: 151552 Links: 1
Access: (0644/-rw-r--r--) Uid: (500/tim) Gid: (500/tim)
Access: 2010-09-15 02:51:36.147724384 -0400
Modify: 2010-09-15 02:51:25.729720057 -0400
Change: 2010-09-15 02:51:25.729720057 -0400

$ fdisk -l disk1.raw
Disk disk1.raw: 0 MB, 0 bytes
255 heads, 63 sectors/track, 0 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x00000000

Disk disk1.raw doesn’t contain a valid partition table

From this it’s quite clear that there isn’t much that disk1.raw has in common with the
actual disk drive sda. Using this information, let’s put the physical disk and the virtual
disk size-by-size andmake some observations about their properties.

• file thinks it’s “data”, which the filemanual page says is how it labels what are usually
“binary” or non-printable files.

• stat says it’s just a regular file.

• fdisk doesn’t knows how big it is, nor can it find any partition information on it.

These results make perfect sense, as disk1.raw is just 230 0’s in a row.

The Linux Sysadmins Guide to Virtual Disks 35 / 73

Command sda disk1.raw
file block special data
stat block special regular file
fdisk Contains partition table Missing partition table

Table 3.1: Attribute Comparison

3.1.4 Create a Partition Table

Use GNU parted to put a valid partition table on the image file.

Example 3.4 Create a Partition Table

$ parted disk1.raw mklabel msdos
WARNING: You are not superuser. Watch out for permissions.

Let’s examine the image again to see how the operating system thinks it has changed.

Example 3.5 Overview - What Changed

$ file disk1.raw
disk1.raw: x86 boot sector, code offset 0xb8

$ stat disk1.raw
File: ‘disk1.raw’
Size: 1073741824 Blocks: 2097160 IO Block: 4096 ←↩

regular file
Device: 805h/2053d Inode: 151552 Links: 1
Access: (0644/-rw-r--r--) Uid: (500/tim) Gid: (500/tim)
Access: 2010-09-15 19:38:30.516826093 -0400
Modify: 2010-09-15 19:38:25.934611550 -0400
Change: 2010-09-15 19:38:25.934611550 -0400

$ fdisk -l disk1.raw
You must set cylinders.
You can do this from the extra functions menu.

Disk disk1.raw: 0 MB, 0 bytes
255 heads, 63 sectors/track, 0 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x000e44e8

Device Boot Start End Blocks Id System

• Now, instead of “data”, the file command thinks it is an “x86 boot sector”. That sounds
pretty accurate as we just put a partition table on it.

• stat still thinks it’s a regular file, as opposed to a block special device, or a socket, etc…

• fdiskwas able to find a partition table in the boot sector which file found.

Command sda disk1.raw disk1.raw (via
parted)

file block special data x86 boot sector
stat block special regular file regular file

fdisk has partition table no partition table
valid partition
table. unknown
cylinder count

Table 3.2: What parted Changed

3.2 Devices and Partitions

3.2.1 Introduction

After using parted disk1.raw has a partition table, but does that mean we can create
partitions on it now? Let’s run fdisk on disk1.raw.
$ fdisk disk1.raw
You must set cylinders.
You can do this from the extra functions menu.

Command (m for help):

A much simpler way to create partitions (still using fdisk) is by accessing the file as if it
were an actual device. Doing this requires creating loop devices.

The Linux Sysadmins Guide to Virtual Disks 37 / 73

Instead of using fdisk on disk1.raw directly, we’ll create a loop device and associate
disk1.raw with it. From here on we’ll be accessing our virtual drives through loop de-
vices.

Why are we doing this? And what is a loop device?

Unfortunately for disk1.raw, it will never be anything more than just a file. The oper-
ating system just doesn’t have interfaces for block operations against files. As the kernel
creates the block special device/dev/sda to representmy hard drive, we need to create
a block special device to represent our virtual disk. This is called a loop device. You can
think of a loop device, e.g., /dev/loop1, like a translator.
With a loop device inserted between programs and our disk image we can view and oper-
ate on the disk image as if it were a regular drive. When accessed through a loop device
fdiskcanproperlydetermine thenumberof cylinders, heads, andeverythingelse required
to create partitions.

3.2.2 Creating a Loop Device

Note
Since we’ll be working with the kernel to create a device you’ll need to have
super user permissions to continue.

To create a loop device run the losetup command with the -f option. The first available
loop device will be selected automatically and associated with disk1.raw ⁹ .

Example 3.6 Creating a loop device with losetup
$ sudo losetup -f disk1.raw

$ sudo losetup -a
/dev/loop1: [0805]:151552 (/home/tim/images/disk1.raw)

You can run file, stat, and fdisk on disk1.raw to verify that nothing has changed since
we put a partition table on it with parted.

⁹ FUSE (Filesystem in Userspace) has a module called Mountlo that allows non-root users to make make
loop devices.

3.2.3 Examine the loop device

Example 3.7 Examining the Loop Device

$ file /dev/loop0
/dev/loop0: block special

$ stat /dev/loop0
File: ‘/dev/loop0’
Size: 0 Blocks: 0 IO Block: 4096 block ←↩

special file
Device: 5h/5d Inode: 5102 Links: 1 Device type: 7,0
Access: (0660/brw-rw----) Uid: (0/ root) Gid: (6/ ←↩

disk)
Access: 2010-09-15 01:22:09.909721760 -0400
Modify: 2010-09-12 11:03:19.351004598 -0400
Change: 2010-09-12 11:03:24.694640781 -0400

$ sudo fdisk -l /dev/loop0
Disk /dev/loop0: 1073 MB, 1073741824 bytes

255 heads, 63 sectors/track, 130 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x000e44e8

Device Boot Start End Blocks Id System

Look back at Example 3.1, “Regular Disk Drive” [30] where I ran these commands against
my actual disk drive (/dev/sda) and you’ll see the results are quite similar.

• file detects loop0 as a block special device.

• stat does too.

• fdisk no longer says we need to set the cylinders.

Our virtual disk is starting to look like a real hard drive now! To conclude this sectionwe’ll:

• create a partition

• format it with an ext3 filesystem

• mount it for reading and writing

The Linux Sysadmins Guide to Virtual Disks 39 / 73

Command sda disk1.raw disk1.raw
(via parted)

/dev/
loop0

file block special data x86 boot
sector block special

stat block special regular file regular file block special

fdisk has partition
table

no partition
table

valid partition
table.
unknown
cylinder
count

valid partition
table. known
cylinder count

Table 3.3: Examining the Loop Device

3.2.4 Creating partitions

Open /dev/loop0 (or whatever loop device your disk was associated with) in fdisk to
create a partition.

Example 3.8 Creating a partition with fdisk
$ sudo fdisk /dev/loop0
Command (m for help): n
Command action

e extended
p primary partition (1-4)

p
Partition number (1-4): 1
First cylinder (1-130, default 1):
Using default value 1
Last cylinder, +cylinders or +size{K,M,G} (1-130, default 130):
Using default value 130

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 83

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: Re-reading the partition table failed with error 22: ←↩
Invalid argument.

The kernel still uses the old table. The new table will be used ←↩
at

the next reboot or after you run partprobe(8) or kpartx(8)
Syncing disks.

$ sudo fdisk -l /dev/loop0
Disk /dev/loop0: 1073 MB, 1073741824 bytes
255 heads, 63 sectors/track, 130 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x000e44e8

Device Boot Start End Blocks Id System
/dev/loop0p1 1 130 1044193+ 83 Linux

3.2.5 Formatting Partitions

Unlike /dev/sda we can’t just create a partition on the loop0 device by addressing it
as/dev/loop0. This is because the kernel has no device created to represent it. Instead
we’ll have to create another device associated with a specific offset in our device/file.

Q:What is an offset, and why do we have to specify one?

A: Anoffset indicates how far from thebeginning of a device something is. The first par-
tition is not located at the beginning of the device. That is where the Master Boot Record
(MBR) is stored (offset=0). If we tried to create a partition atoffset=0wewould over-
write the MBR. Knowing the offset will allow us to create a device mapped to where the
first partition begins without overwriting the MBR. Linux does this automatically for regu-
lar disks during the boot process.

Q: How do we calculate the offset to specify?

A: To calculate the offset we need to know what sector the partition (loop0p1) starts
on. fdisk can give us this information. (Spoiler: 9 times out of 10 the offset for the first
partition will be 512 * 63 =32256).
Q:Why doesn’t the first partition begin after the MBR? Specifically, why is there empty space
between the first sector (where the MBR is stored) and the first partition?

A: It’s complicated but worth learning about. See Appendix B, Appendix: Disk Drive His-
tory [66] for a complete explanation. Here’s the short answer: In current PC MBRs there

The Linux Sysadmins Guide to Virtual Disks 41 / 73

may be up to 446B of executable code and a partition table containing up to 64B of data.
When you add in another 2B to record a Boot Signature you have 512B, which up until re-
cently happened to be the typical size of one sector. Partitioning tools historically left the
space between the MBR and the second cylinder empty. Modern boot loaders (NTLDR¹⁰,
GRUB¹¹, etc) use this space to store additional code and data necessary to boot the system
¹² ¹³. Some software, such as licensing managers and virus scanners, also use this space
to store files ¹⁴ .

Print the partition table using fdisk with the -u option to switch the printing format to
sectors instead of cylinders for units.

$ sudo fdisk -u -l /dev/loop0
Disk /dev/loop0: 1073 MB, 1073741824 bytes
255 heads, 63 sectors/track, 130 cylinders, total 2097152 sectors
Units = sectors of 1 * 512 = 512 bytes
Disk identifier: 0x000e44e8

Device Boot Start End Blocks Id System
/dev/loop0p1 63 2088449 1044193+ 83 Linux

/dev/loop0p1 is our first partition and from the table above we know that it starts on
sector 63. Sincewehave to specify offsets in byteswemultiply 63 by 512 (the default block
size) to obtain an offset of 32256 bytes.

$ sudo losetup -o 32256 -f /dev/loop0

$ sudo losetup -a
/dev/loop0: [0805]:151552 (/home/tim/images/disk1.raw)
/dev/loop1: [0005]:5102 (/dev/loop0), offset 32256

Now that we have /dev/loop1 representing the first partition of our virtual disk we can
create a filesystem on it and finally mount it.

¹⁰ NT Loader (NTLDR): http://en.wikipedia.org/wiki/NTLDR
¹¹ The Grand Unified Bootloader (GRUB): http://www.gnu.org/software/grub/
¹² GRUB: BIOS Installation: http://www.gnu.org/software/grub/manual/grub.html#

BIOS-installation
¹³ Simon Kitching: Booting Linux on x86 using Grub2: http://moi.vonos.net/linux/Booting_

Linux_on_x86_with_Grub2/#installing-grub
¹⁴ Ubuntu Forums - Sector 32 FlexNet Problem -- Grub: http://ubuntuforums.org/showthread.

php?t=1661254

http://en.wikipedia.org/wiki/NTLDR
http://www.gnu.org/software/grub/
http://www.gnu.org/software/grub/manual/grub.html#BIOS-installation
http://www.gnu.org/software/grub/manual/grub.html#BIOS-installation
http://moi.vonos.net/linux/Booting_Linux_on_x86_with_Grub2/#installing-grub
http://moi.vonos.net/linux/Booting_Linux_on_x86_with_Grub2/#installing-grub
http://ubuntuforums.org/showthread.php?t=1661254
http://ubuntuforums.org/showthread.php?t=1661254

Example 3.9 Formatting andmounting the partition
$ sudo mkfs -t ext3 /dev/loop1
mke2fs 1.41.9 (22-Aug-2009)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
65536 inodes, 262136 blocks
13106 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=268435456
8 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376

Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 25 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to ←↩

override.

$ sudo losetup -d /dev/loop1

$ sudo losetup -d /dev/loop0

$ mkdir partition1

$ sudo mount -t ext3 -o loop,offset=32256 disk1.raw partition1/

$ mount | grep partition1
/dev/loop0 on /home/tim/images/partition1 type ext3 (rw,offset ←↩

=32256)

$ df -h partition1/
Filesystem Size Used Avail Use% Mounted on
/dev/loop0 1008M 18M 940M 2% /home/tim/images/ ←↩

partition1

The Linux Sysadmins Guide to Virtual Disks 43 / 73

Note
The same procedure applies to any arbitrary partition: obtain the starting sec-
tor, multiply by block size.

3.2.6 Cleaning Up

You can detach the loop device (while leaving your file intact) by giving the -d option to
losetup.

Example 3.10 Detaching a loop device

$ sudo losetup -d /dev/loop1

Chapter 4

Helper Utilities

Up until now most of the commands we’ve been using have been very low-level. Just
the section on resizing images ¹ is about 8 pages of this book (depending on what format
you’re reading it in). Let’s get real here: it’s not pragmatic to run ten commands when one
or two will suffice. Luckily for us some very helpful utilities exist.

This section will introduce those utilities. I’ll highlight some key features in each, show
demos, and tell youwhere you can findmore information. Let’s get started by introducing
our new heros using their official descriptions.

libguestfs
libguestfs is away to create, access andmodify disk images. You can look inside
disk images, modify the files they contain, create them from scratch, resize them,
andmuchmore. It’s especially useful from scripts and programs and from the com-
mand line.

virt-manager
The“VirtualMachineManager” application (virt-manager for shortpackagename) is
a desktop user interface formanaging virtualmachines. It presents a summary view
of running domains, their live performance & resource utilization statistics. The de-
tailed view graphs performance & utilization over time. Wizards enable the creation
of new domains, and configuration & adjustment of a domain’s resource allocation
&virtual hardware. AnembeddedVNCclient viewerpresentsa full graphical console
to the guest domain.

¹ Section 2.2, “Resizing Disk Images” [8]

The Linux Sysadmins Guide to Virtual Disks 45 / 73

4.1 libguestfs

libguestfsmake managing virtual disks (and machines) a lot simpler. Included is a C
library (with bindings available for Perl, Python, Ruby, Java, OCaml, PHP, Haskell, Erlang,
Lua and C#), as well as a collection of 34 utilities (at the time of writing).

I won’t even attempt to cover all of it’s features in this book. Instead, I’ll go over some
of the most useful utilities. For more information on libguestfs you should go to the
projectwebsite ²where they have a complete 250 pagemanual fully describing all aspects
of libguestfs.

4.1.1 guestmount

The guestmount program can be used to mount virtual machine filesystems
and other disk images on the host. It uses libguestfs for access to the guest
filesystem, and FUSE (the ”filesystem in userspace”) to make it appear as a
mountable device.

—man 1 guestmount

foo

4.1.2 virt-filesystems

This tool allows you to discover filesystems, partitions, logical volumes, and
their sizes in a disk image or virtual machine.

—man 1 virt-filesystems

virt-filesystems is the Sherlock Holmes ³ of virtual disk management. What delights me
most about virt-filesystems is how well it integrates with LVM (Logical Volume Manager)
to show you LVM device paths. This tool is most useful in combination with other tools,
such as virt-resize, virt-sparsify, or guestmount.

² libguestfs homepage: http://libguestfs.org/
³ Sherlock Holmes is a fictional detective. Read some of the books online for free on Project Gutenberg:

http://www.gutenberg.org/ebooks/1661

http://libguestfs.org/
http://www.gutenberg.org/ebooks/1661

4.1.3 virt-rescue

virt-rescue is like a Rescue CD, but for virtual machines, and without the need
for a CD. virt-rescue gives you a rescue shell and some simple recovery tools
which you can use to examine or rescue a virtual machine or disk image.

—man 1 virt-rescue

4.1.4 virt-resize

virt-resize is a tool which can resize a virtual machine disk, making it larger
or smaller overall, and resizing or deleting any partitions contained within.

—man 1 virt-resize

4.1.5 virt-sparsify

virt-sparsify is a tool which can make a virtual machine disk (or any disk im-
age) sparse a.k.a. thin-provisioned. Thismeans that free spacewithin thedisk
image can be converted back to free space on the host.

—man 1 virt-sparsify

Dependingonyourdeployment strategy thevirt-sparsifycommandcouldpotentially save
you a lot of disk space. This is especially the case in “cloud”-type setups where new ma-
chinesarecommonlycreated fromasingle “golden-master” image. If you’remakingcopies
of any disk image then you need tomake sure that you aren’t unnecessarily wasting space
on your disk.

That’s where virt-sparsify comes in. When you sparsify a disk image (or any other file
for that matter) you’re potentially reducing the number of blocks on the backing storage
volume ⁴which are allocated to the disk image. This frees up roomon the backing volume
for storing other files. Sparsifying a disk image is only effective as there is space that can
be freed. More on that next.

Important
Sparsifying files doesn’t divorce you from the inherent size limitations of your
backing storage volume. I.e., you can not expect to fill two 100GiB sparse disk
images with data if the volume they’re stored on is only 50GiB.

⁴ The phrase “backing storage volume” refers to the actual storage device which the disk image is saved on.

The Linux Sysadmins Guide to Virtual Disks 47 / 73

In this example I’ll sparsify the disk imagewe cloned froma thumbdrive earlier in the book
⁵ . Let’s start by using the qemu-img info subcommand ⁶ to see howmuch total space the
disk image has allocated to it presently:

qemu-img info ./thumb_drive.raw
image: ./thumb_drive.raw
file format: raw
virtual size: 966M (1012924416 bytes)
disk size: 914M

The output you want to take note of here is on the disk size line: 914M. For a thumb
drive that only had two small text files on it, we sure are wasting a lot of space. Let’s at-
tempt to reclaim that space with virt-sparsify. We’ll call virt-sparsify with two parame-
ters, the first is the source disk name, thumb_drive.raw, and the second is the name
of the sparsified disk image we’re going to create, thumb_drive_sparse.raw:

Example 4.1 Sparsify a disk image
virt-sparsify ./thumb_drive.raw ./thumb_drive_sparse.raw
Create overlay file to protect source disk ...
Examine source disk ...
100% [...] 00:00

Fill free space in /dev/vda1 with zero ...
100% [...] --:--

Fill free space in /dev/vda2 with zero ...
100% [...] --:--

Copy to destination and make sparse ...

Sparsify operation completed with no errors. Before deleting the ←↩
old

disk, carefully check that the target disk boots and works ←↩
correctly.

As you can see, the output from virt-sparsify is straightforward and easy to grok ⁷ . Right
away we can tell that virt-sparsify is protecting our source file from undesired modifica-
tions by creating an “overlay file”. Next it examines the disk, identifying entities such as
partition tables, LVM volumes, and space to be freed. Then the freeable space is zeroed
out.

⁵ Example 2.23, “Conversion Steps” [29]
⁶ We could also use the ls -lsh command. The -s option prints the allocated size (actually used space), and

the -h options prints sizes in “human readable” formats, e.g., 915M or 4.0K
⁷ grok - verb - ”To understand. Connotes intimate and exhaustive knowledge”. Source: http://www.

catb.org/jargon/html/G/grok.html

http://www.catb.org/jargon/html/G/grok.html
http://www.catb.org/jargon/html/G/grok.html

Remember that we haven’t modified the source image yet! All of the potential changes
were made to an overlay file. The final step to sparsify the file is combining the delta
present in the overlay file with the source file and writing the result out to disk. Observe
the following important note from the virt-sparsifyman page:

Important
virt-sparsify may require up to 2x the virtual size of the source disk image (1
temporary copy + 1 destination image). This is in the worst case and usually
much less space is required.

Let’s use qemu-img info again and examine the sparsified disk image (thumb_drive_
sparse.raw). Recall thatwe’re primarily concernedwith thedisk size field and that
the starting size was 914M:

qemu-img info ./thumb_drive_sparse.raw
image: ./thumb_drive_sparse.raw
file format: raw
virtual size: 966M (1012924416 bytes)
disk size: 6.2M

From this we can see that after the image was sparsified the allocated space is only 6.2M.
That’s a net savings of 907.8M! Don’t let this result give you unreasonable expectations
though. This example demonstrated an ideal case, where the source disk was virtually
100% empty to begin with.

virt-sparsify has other options available as well. For example, it can convert between
formats (e.g., vdmk to qcow2), ignore specific filesystems on the source disk, or enable
compression in qcow2 images. Read the man page for a complete description of all the
available options.

4.2 virt manager

Up until now most of the commands we’ve been using have been very low-level. Just
the section on resizing images ⁸ is about 8 pages of this book (depending on what format
you’re reading it in). Let’s get real here: it’s not pragmatic to run ten commands when one
or two will suffice. Luckily for us some very helpful utilities exist.

⁸ Section 2.2, “Resizing Disk Images” [8]

The Linux Sysadmins Guide to Virtual Disks 49 / 73

Chapter 5

Disk Formats

In this chapter we’ll review some of the formats available for virtual disks. Along the way
we’ll discuss features of each format, performance options (tunables), and use case con-
siderations.

5.1 RAW

Words to introduce the feature set.

• Simple

• Exportable

• Supports sparse files

Words about performance and use-cases.

5.2 QCOW

Words to introduce the feature set. http://people.gnome.org/~markmc/qcow-image-format-
version-1.html

Words about performance and use-cases.

• Smaller file size, even on filesystems which don’t support holes (i.e. sparse files)

• Snapshot support, where the imageonly represents changesmade toanunderlyingdisk
image

• Optional zlib based compression

• Optional AES encryption

• Superseded by QCOW2

5.3 QCOW2

Words to introduce the feature set. http://people.gnome.org/~markmc/qcow-image-format.html

Words about performance and use-cases.

• Smaller file size, even on filesystems which don’t support holes (i.e. sparse files)

• Copy-on-write support via backing images, where the image only represents changes
made to an original separate disk image

• Snapshot support, where the image can contain multiple snapshots of the images his-
tory

• Optional zlib based compression

• Optional AES encryption

• Options for performance/data integrity tuning

5.4 Other Formats

In addition to the formats we’ve already reviewed, QEMU has varying levels of support for
several other disk image formats. See the documentation¹ for a complete description of
their supported options.

The following formats are supported by QEMU in a read-writemode:
¹ QEMU User Docs: 3.6.6 Disk image file formats - http://qemu.weilnetz.de/qemu-doc.html#

disk_005fimages_005fformats

http://qemu.weilnetz.de/qemu-doc.html#disk_005fimages_005fformats
http://qemu.weilnetz.de/qemu-doc.html#disk_005fimages_005fformats

The Linux Sysadmins Guide to Virtual Disks 51 / 73

qed
OldQEMUimage formatwith support forbacking filesandcompact image files (when
your filesystem or transport medium does not support holes).

cow
User Mode Linux Copy OnWrite image format. It is supported only for compatibility
with previous versions.

vdi
VirtualBox 1.1 compatible image format.

vmdk
VMware 3 and 4 compatible image format.

vpc
VirtualPC compatible image format (VHD).

The following formats are also supported by QEMU in a read-onlymode:

bochs
Bochs images of growing type.

cloop
Linux Compressed Loop image, useful only to reuse directly compressed CD-ROM
images present for example in the Knoppix CD-ROMs².

dmg
Apple disk image.

parallels
Parallels disk image format.

² KNOPPIX: bootable Live Linux system on CD/DVD - http://www.knopper.net/knoppix/
index-en.html

http://www.knopper.net/knoppix/index-en.html
http://www.knopper.net/knoppix/index-en.html

Chapter 6

Performance Considerations

Managing disk images doesn’t stop at file manipulation and storage pool monitoring. Af-
ter you create a disk image something else is going to use it. That’s where performance
tuning considerations come into play. This section straddles the line between system ad-
ministrator andapplicationdeveloper roles. What Imean to say is that applicationof some
techniques in this sectionmay require knowledgewhich is outsideof yourdomainasa sys-
tem administrator. To help bridge the knowledge gap I’ll include notes on how to identify
what you’re looking for when tuning the system.

Many performance tuning decisions come down to one question: In the event of catas-
trophic system failure, how expensive is it to replace the data? If that value is low you can
reach higher levels of performance at the cost of higher risk of data loss. If that value is
high you can reach greater levels of data integrity at the cost of performance.

In this section we’ll cover the following topics:

• Selecting the right disk caching mode

• Selecting the right virtual device

• Selecting the right I/O scheduler

• Balancing resources with cgroups

Youmay also be interested in reading over Chapter 5, Disk Formats [49].

The Linux Sysadmins Guide to Virtual Disks 53 / 73

6.1 I/O Caching

I/O caching requirements differ from host to host. I/O caching refers to themode (orwrite
policy) bywhich the kernel writesmodified data to both the cache and the caches backing
store. There are twogeneralmodes to consider,write-back andwrite-through. Let’s review
them now:

Write-back
Writes are done lazily. That is, writes initially happen in cache, and then are propa-
gated to the appropriate backing storage device. Also known aswrite-behind.

Write-through
Writes are done synchronously to cache and the backing store (main system mem-
ory/disk drive).

Selecting the correct cache mode can increase or decrease your overall system perfor-
mance. Selecting the correct mode depends on several factors, including:

• Cost of data loss

• System latency vs. throughput requirements

• Operating System support

• Hypervisor feature support

• Virtualization deployment strategy

In addition to write-back and write-through modes there is a third pseudo-mode called
none. This mode is considered a write-back mode. In this mode the onus is on the guest
operating system tohandle the diskwrite cache correctly in order to avoid data corruption
on host crashes². In a supported system where latency/throughput are valued over data
integrity you should consider choosing the “none”mode¹ Nextwe’ll review the two cache
mode options in greater detail. At the end of the chapter we’ll summarize the use cases
for eachmode.

¹ https://access.redhat.com/site/documentation/en-US/Red_Hat_
Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/
chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html

6.1.1 Write-back Caching

Write-back cachingmeans that as I/O from the virtual guest happens it is reported as com-
pleteas soonas thedata is in thevirtualhostspagecache². This is a shortcutaround the I/O
process wherein the data is written into the systems cache and then subsequently written
into the backing storage volume. Whether that volume be volatile system memory (such
as ram), or a non volatile source (such as a disk drive). In write-back caching the new data
is not written to the backing store until a later time.

I remember the phrase write-back by thinking of it like this: “As soon as a write happens
on the guest a response is sent back to indicate that the operation has ‘completed’.”

Using write-back caching will have several side-affects:

PRO: Increased performance
Both the guest and host will experience increased I/O performance due to the lazy
nature of cache-writes.

CON: Increased risk of corruption
Until the data is flush’d there is an increased risk of data corruption/loss due to
the volatile properties of system cache.

CON: Doesn’t support guest migrations
You can not use the guest migration hypervisor feature if you are using write-back
cachemode.

CON: Not supported by all Operating Systems
Not all OSsmay support write-back cache. For example, RHEL releases prior to 5.6³.

Though theCONsout-number thePROs, In reality, write-back is not as dangerous as itmay
appear to be. The QEMU User Documentation² says the following:

Bydefault, thecache=writebackmode isused. Itwill report datawrites as
completed as soon as the data is present in the host page cache. This is safe as
long as your guestOSmakes sure to correctly flush disk cacheswhere needed.
If your guest OS does not handle volatile disk write caches correctly and your
host crashes or loses power, then the guest may experience data corruption.

² QEMU User Docs: -drive options - http://qemu.weilnetz.de/qemu-doc.html#sec_
005finvocation

³ https://access.redhat.com/site/documentation/en-US/Red_Hat_
Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/
chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html

http://qemu.weilnetz.de/qemu-doc.html#sec_005finvocation
http://qemu.weilnetz.de/qemu-doc.html#sec_005finvocation
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html

The Linux Sysadmins Guide to Virtual Disks 55 / 73

If your guest is ineligible for the “none” mode, because it doesn’t manage its disk write
cache well, then write-back mode is a great secondary option.

6.1.2 Write-through Caching

Write-through caching means that modified data is written synchronously into both sys-
tem cache, aswell as a backing store (RAM/disk drive). Because thewriting happens in the
backing store as well, write-through cache introduces a performance hit.

Because write-through caching puts a larger load on the host it is best used in modera-
tion. You should avoid enablingwrite-through caching on a host withmany guests, as this
configuration is prone to scaling issues. You should only consider enabling write-through
caching in situationswhere data integrity is paramount above all else or wherewrite-back
caching is not available on the guest.

6.2 I/O Schedulers

Scheduling algorithms, sometimes referred to as elevators⁴, are methods used by the op-
erating system to decide the order in which block I/O operations (read/write) take place.
Different algorithms exist because no single one is best suited for all workloads.

Adatabase serverwouldwant toprioritize latencyover throughput, thusmaking thedead-
line scheduler an ideal choice, whereas in an interactive desktop youwould favor the CFQ
(“completely fair queueing”) scheduler. Workload isn’t the only parameter to consider
when selecting a scheduler. The properties of the backing storage device also play an im-
portant role (SSD or spinning disk?). In a virtualized environment the choice of scheduler
becomes evenmore involvedbecause youmaywish to consider the scheduler usedby the
hypervisor as well.

As you can see, the topic of selecting the proper I/O scheduler is neither short, nor is it sim-
ple. That being said, in this chapter I’ll attempt to provide you with sufficient information
to make an informed decision as well as several resources which discuss I/O schedulers
in greater detail. Together we’ll review the scheduler options available, the procedure for
setting one permanently, and typical use cases.

This chapter is incomplete. Please come back for updates.

⁴ TODO: Explain why

6.2.1 Additional Resources

White papers:

• DoesVirtualizationMakeDiskSchedulingPassé? -http://www-users.cs.umn.edu/
~chandra/papers/hotstorage09/paper.pdf

• OnDisk I/OScheduling in VirtualMachines -http://sysrun.haifa.il.ibm.com/
hrl/wiov2010/papers/kesavan.pdf

• Understanding the Effects of Hypervisor I/O Scheduling for Virtual Machine Performance
Interference -http://www.seas.gwu.edu/~howie/publications/CloudCom12.
pdf

• I/OScheduling forSANandVirtualization -http://www.monperrus.net/martin/
IO+scheduling+for+san+and+virtualization

Performance tests:

• CephBobtailPerformance– IOSchedulerComparison -http://ceph.com/community/
ceph-bobtail-performance-io-scheduler-comparison/

• I/O Scheduler Comparison On The Linux 3.4 Desktop - http://www.phoronix.com/
scan.php?page=article&item=linux_iosched_2012&num=1

http://www-users.cs.umn.edu/~chandra/papers/hotstorage09/paper.pdf
http://www-users.cs.umn.edu/~chandra/papers/hotstorage09/paper.pdf
http://sysrun.haifa.il.ibm.com/hrl/wiov2010/papers/kesavan.pdf
http://sysrun.haifa.il.ibm.com/hrl/wiov2010/papers/kesavan.pdf
http://www.seas.gwu.edu/~howie/publications/CloudCom12.pdf
http://www.seas.gwu.edu/~howie/publications/CloudCom12.pdf
http://www.monperrus.net/martin/IO+scheduling+for+san+and+virtualization
http://www.monperrus.net/martin/IO+scheduling+for+san+and+virtualization
http://ceph.com/community/ceph-bobtail-performance-io-scheduler-comparison/
http://ceph.com/community/ceph-bobtail-performance-io-scheduler-comparison/
http://www.phoronix.com/scan.php?page=article&item=linux_iosched_2012&num=1
http://www.phoronix.com/scan.php?page=article&item=linux_iosched_2012&num=1

The Linux Sysadmins Guide to Virtual Disks 57 / 73

Chapter 7

Troubleshooting/FAQs

Q:Why are my cloned disks so big, I thought QCOWs would be smaller if my disk wasmostly
empty ‽ ¹

A: Creating a disk image from a device copies all blocks from the source device. This in-
cludes data which has been deleted on the filesystem. When you delete a file from the
filesystem the operating systemwill not signal to the disk that it shouldmark the formerly
occupied blocks as free ² . The additional overhead associated with the operation would
hurt disk performance. What option do you have available if you want to minimize the
size of the created disk image? You have two options, a free utility called zerofree ³ , and
virt-sparsify. I refer you to Section 4.1.5, “virt-sparsify” [46] for more information on virt-
sparsify.

Q:Why do I get a device busy error message when unmounting $THING?

A: A process is accessing files on the mounted volume. Possible fixes:

• Sometimes the solution is a simple as lazily unmounting the device. Do this by giving
the -l option to umount.

• Make sure youdon’t have any open shellswhose presentworking directory is in the path
you’re trying to unmount.

¹ This character “‽” is called the interrobang. I just blew your mind.
² This is what allows data recovery software to work
³ zerofree homepage: http://intgat.tigress.co.uk/rmy/uml/sparsify.html

http://intgat.tigress.co.uk/rmy/uml/sparsify.html

• If that doesn’t work you can try using the fuser command to find what processes are
accessing the device. For example: fuser /mnt/thumbdrive. This command also
accepts anoptional-koption,whichwill try to kill all processes accessing thebusypath.

• If none of that works you can try the lsof command (superuser permissions required to
see everything being accessed). For example: lsof | grep /mnt/path.

The Linux Sysadmins Guide to Virtual Disks 59 / 73

Chapter 8

Glossary

AES encryption
Advanced Encryption Standard - very fast and secure; the de facto standard for sym-
metric encryption. See Also ”zlib compression”.

ASCII
American Standard Code for Information Interchange. It is a 7-bit code. ASCII en-
codes characters as you would enter them into a computer (like this book)

Backing image
A (typically) read-only disk imagewhich canbeused as a starting point for new read-
write images. See Also ”Snapshot”.

Base-image
Placeholder. See Also ”Backing image”, ”Snapshot”.

block

block special

Caret notation

cat
A utility programwhich concatenates files and print them the standard output.

Control character

cylinder

dd
A utility programwhich can copy files, converting and formatting them according to
the options given by the user.

Devicemap
Software which creates devices from partition tables which you can interact with.
See Also ”Partition table”, ”kpartx”, ”GParted”, ”Partition”.

dev null

dev zero

fdisk
A utility programwhichmanipulates disk partition tables. See Also ”Partition”, ”Par-
tition table”.

file
A utility programwhich is used to determine file types

Filesystem

fuse

GParted
A graphical application used for manipulating (creating, resizing, moving, copying)
the filesystems of partitions.

Guest OS
An operating system which is installed and ran on emulatd, virtual, or paravirtual
hardware which is managed by hypervisor software on the Host OS. See Also ”Hy-
pervisor”, ”Host OS”.

head

Host OS
The running system (server, OS) which provides resources and facilities for running
several virtual Guest Operating Systems. See Also ”Guest OS”.

The Linux Sysadmins Guide to Virtual Disks 61 / 73

Hypervisor
Software blabla.

IDE

Image
A file which virtualization software can use as a hard disk, similar to a snapshot. See
Also ”Snapshot”.

kpartx
Reads partition tables on a specified device and create device maps over partition
segments detected. See Also ”Partition”.

Lookback device

Loop device

losetup
A utility program which sets up and controls loop devices. See Also ”Loop device”,
””.

ls
A command which lists directory contents and file attributes.

LVM

MBR
TheMasterBootRecordholds the informationonhow the logical partitions, contain-
ing file systems, are organized on a storage device. See Also ”Partition”, ”Partition
table”.

meta-data
Data which describes other data; e.g., virtual disk configuration parameters.

mount
A utility programwhich attaches a filesystem to a directory tree. See Also ”umount”,
”Filesystem”.

NUL

offset

OS
Short for Operating System.

parted
Utility programwhich manipulates storage partitions See Also ”fdisk”.

Partition
In storage devices, the definition of storage allocation on a device; the capacity of
that region is less than or equal to that of the backing storage device; multiple par-
titions may exist.

Partition table
Meta-data stored on a storage volume which describes the partition layout, i.e., be-
gin/end locations, types, and other properties. See Also ”Device map”, ”kpartx”,
”GParted”, ”Partition”, ”meta-data”.

QCOW2
QEMY Copy On Write image format (version 2); improves v1 with few features: snap-
shots, performance tuning options.

QCOW
QEMU Copy On Write image format (version 1); supports sparse files, backing files,
and encryption.

qemu-img
Virtual disk manipulation tool bundled with the QEMU (Quick Emulator) software
collection.

RAW
Thesimplest typeof virtualdisk format, as the file containsnoextrameta-dataabout
itself, often usable without requiring special software. See Also ”QCOW”, ”QCOW2”,
”meta-data”.

resize2fs
Utility programwhich can resize ext2, ext3, or ext4 file systems.

SATA

sector

The Linux Sysadmins Guide to Virtual Disks 63 / 73

Snapshot
An virtual disk feature representing a moment in time, not represented as a disk
image. See Also ”Backing image”, ”Base-image”.

socket

superuser

symlink

UNIX

umount
Utility programwhich detaches the file system(s)mentioned from the file hierarchy.
See Also ”mount”.

virsh

x86 boot sector

zlib compression
general-purpose, patent-free, lossless data compression library. See Also ”AES en-
cryption”.

Appendix A

Appendix: Man Pages

A.1 UNITS

units, kilo, kibi, mega, mebi, giga, gibi — decimal and binary prefixes

DESCRIPTION

Binary prefixes

The binary prefixes resemble the decimal ones, but have an additional ’i’ (and ”Ki” starts
with a capital ’K’). The names are formed by taking the first syllable of the names of the
decimal prefix with roughly the same size, followed by ”bi” for ”binary”.

See also: http://physics.nist.gov/cuu/Units/binary.html

Discussion

Before these binary prefixes were introduced, it was fairly common to use k=1000 and
K=1024, just like b=bit, B=byte. Unfortunately, theM is capital already, and cannot be cap-
italized to indicate binary-ness.

At first that didn’t matter too much, since memory modules and disks came in sizes that
were powers of two, so everyone knew that in such contexts ”kilobyte” and ”megabyte”

http://physics.nist.gov/cuu/Units/binary.html

The Linux Sysadmins Guide to Virtual Disks 65 / 73

Prefix Name Value
Ki kibi 210 = 1024
Mi mebi 220 = 1048576
Gi gibi 230 = 1073741824
Ti tebi 240 = 1099511627776
Pi pebi 250 = 1125899906842624

Ei exbi 260 =
1152921504606846976

Table A.1: Binary Prefixes

meant 1024 and 1048576 bytes, respectively. What originally was a sloppy use of the pre-
fixes ”kilo” and ”mega” started to become regarded as the ”real truemeaning”when com-
puters were involved. But then disk technology changed, and disk sizes became arbitrary
numbers. After a period of uncertainty all disk manufacturers settled on the standard,
namely k=1000, M=1000k, G=1000M.

Thesituationwasmessy: in the14k4modems, k=1000; in the1.44MBdiskettes,M=1024000;
etc. In 1998 the IEC approved the standard that defines the binary prefixes given above,
enabling people to be precise and unambiguous.

Thus, today, MB = 1000000B and MiB = 1048576B.

In the free softwareworld programs are slowly being changed to conform. When the Linux
kernel boots and says:

hda: 120064896 sectors (61473 MB) w/2048KiB Cache

the MB are megabytes and the KiB are kibibytes.

Appendix B

Appendix: Disk Drive History

Disk drives, and how they are accessed, is a broad subject which has changed greatly over
time. Some“facts”areactually justmisconceptionswhichare takenascanon. This section
will attempt to sort the facts from fiction and give some sort of historical account of how
the software and hardware has changed over time.

B.1 Disk Drive Components

In the early days of computing, direct access storage devices (i.e., “hard disk drives”) were
much simpler. A simple device meant a less complex method for interaction was nec-
essary. Two standards define how communication with disk drives may happen: The
IDE/ATA standard for communicatingwithdisk drives, and theBIOS Int 13h standard (“disk
services”) for how operating systems can interact with disk drives via software interrupts
¹ ² .

A disk drive was originally composed of a few simple components:

• One called a head which is mounted on a swinging arm. The arm swings across a disk
platter to move the head to the sector requested for a read or write operation. More
platters in a disk drive meanmore heads and arms.

¹ BIOS Enhanced Disk Drive Specification v3: http://www.t10.org/t13/technical/d98120r0.
pdf

² PC Guide - Int 13h: http://www.pcguide.com/ref/hdd/bios/bios_Int13h.htm

http://www.t10.org/t13/technical/d98120r0.pdf
http://www.t10.org/t13/technical/d98120r0.pdf
http://www.pcguide.com/ref/hdd/bios/bios_Int13h.htm

The Linux Sysadmins Guide to Virtual Disks 67 / 73

• An array of magnetized spinning disks called platters. Because each side of a platter is
used to store data there must be two heads for each platter.

• For the purpose of addressing a specific location on a platter each platter is further bro-
ken down into cylinders (or tracks), and sectors.

Figure B.1: Disk Drive Components

B.2 Access Modes

Addressing data blocks canbedone inmultipleways. The olderways (CHS, ECHS) operate
in terms of physical disk properties (geometry). The second system for addressing blocks
(LBA) has been an option in almost every disk drive since 1996 ³.

Note
Later we’ll see the problems caused by the radically different and conflicting
way the ATA/Int 13h standards are defined.

B.2.1 CHS Addressing

In the beginning data ondisk driveswas addressed by describing the physical geometry of
the disk using a combination of its distance from the center of the disk (track), its rotation
around the disk (sector), and the read-write head which accesses its side of the platter.
This addressing system is called Cylinder-Head-Sector (CHS) ⁴ . This method of access was
provided via a BIOS service commonly referred to as Int 13h. While this system was
quite straightforward, it providednoabstractionbetween thephysical locationofdataand
the act of requesting data from the drive. To read/write data you simply called Int 13h
and specified the physical cylinder, head, and sector on the disk drive of what you were
requesting. It began breaking down when drive capacities exceeded what the standards
at the time were capable of describing. You can think of this like running out of telephone
numbers.

One way this was addressed was through the Int 13h Extensions. The original Int 13h
systemused 24bits for addressing data, the extensions bumped that number up to 64bits.
To put that into perspective, the maximum addressable range of data went from 8.46 GB
up to 9,400,000,000,000 GB ⁵ .

At the same time this was happening, technologywas advancing to the point where it was
becoming logically impossible to represent the physical drive geometry to the BIOS in a

³ Wikipedia.org - Logical Block Addressing: http://en.wikipedia.org/wiki/Logical_block_
addressing#Enhanced_BIOS

⁴ PC Guide - Cylinder-Head-Sector: http://www.pcguide.com/ref/hdd/geom/geom.htm
⁵ PC Guide: Int 13h Extensions http://www.pcguide.com/ref/hdd/bios/bios_

Extensions.htm

http://en.wikipedia.org/wiki/Logical_block_addressing#Enhanced_BIOS
http://en.wikipedia.org/wiki/Logical_block_addressing#Enhanced_BIOS
http://www.pcguide.com/ref/hdd/geom/geom.htm
http://www.pcguide.com/ref/hdd/bios/bios_Extensions.htm
http://www.pcguide.com/ref/hdd/bios/bios_Extensions.htm

The Linux Sysadmins Guide to Virtual Disks 69 / 73

way compatiblewith the ATA/Int 13h systems ⁶ . Towork around this, disk drives began
reporting their Logical Geometry to the BIOS. In this way only the disk drive knows it’s ac-
tual physical (CHS) geometry. Access requests from the BIOS are translated internally on
the hard disk controller into actual physical disk geometry. A disk’s logical geometry will
have a number of sectors approximately equal to, but nevermore than, the physical num-
ber of sectors on the disk. The reported logical geometry fits within the limits of the ATA
standard, but not necessarily (most often not) within the limits of the Int 13h standard.

B.2.2 LBA Addressing

Up to this point we’ve been discussing addressing modes based on the properties of the
physical diskdrive. Nowthediscussionwill transition to themodernLogicalBlockAddress-
ing.

Another important thing that happened was the introduction of geometry translation at
the BIOS level. This is an addressing mode which the BIOS will enable that translates the
logical drive geometry ⁷ into CHS tuples compatible with the Int 13h system. This ad-
dressing mode is often called Extended CHS, or Largemode ⁸ .

In LBAmode there is an abstraction between the operating system and the devices where
the data is stored. Using LBA the operating system accesses data by unique identifiers.
Each block is addressed by a simple identifier which increases sequentially. This system
requires that all involved components are LBA aware: the disk drive controller, the BIOS,
and the operating system.

Eventuallydiskdrive capacities exceeded themaximumaddressable rangedefined inorig-
inal ATA-1 standard. In 2002 the T13 group released the ATA-6 standard ⁹which introduced
48b addressing. This increased the maximum addressable capacity to 128PiB.

B.3 The Master Boot Record

The Master Boot Record (MBR) is located in the first sector of the primary disk drive. The
MBR may be up to 446B of code, and partition tables may be up to 64B of data. When

⁶ Zoned Bit Recording (PC Guide: http://www.pcguide.com/ref/hdd/geom/tracks_ZBR.htm)
is an example of something logically impossible to represent with Int 13h

⁷ Recall: this “logical geometry” has already been translated once to fit ATA standards for the BIOS by the
disk controller

⁸ PC Guide: Extended CHS/Large Mode: http://www.pcguide.com/ref/hdd/bios/
modesECHS-c.html

⁹ INCITS 361-2002 (1410D): AT Attachment - 6 with Packet Interface (ATA/ATAPI - 6): http://www.t13.org/
documents/UploadedDocuments/project/d1410r3b-ATA-ATAPI-6.pdf

http://www.pcguide.com/ref/hdd/geom/tracks_ZBR.htm
http://www.pcguide.com/ref/hdd/bios/modesECHS-c.html
http://www.pcguide.com/ref/hdd/bios/modesECHS-c.html
http://www.t13.org/documents/UploadedDocuments/project/d1410r3b-ATA-ATAPI-6.pdf
http://www.t13.org/documents/UploadedDocuments/project/d1410r3b-ATA-ATAPI-6.pdf

you add in another 2B to record a Boot Signature you have 512B, which up until recently
happened tobe the typical sizeof one sector ¹⁰ ¹¹ . This first sector is referred tobya special
name, the boot sector.

Size (in bytes) Percent Purpose

440B 86% Bootable Code (such as
GRUB ¹²/LILO ¹³)

004B 0.8% Disk signature
002B 0.4% Nulls
064B 13% Partition Table
002B 0.4% MBR Signature

Table B.1: Master Boot Record Contents

In the old days a disk cylinder (or track) was typically 63 sectors. This would represent
one concentric ring of storage on a physical disk. Some people believe that early operat-
ing systems (notablyMS-DOS) enforced requirementswhichdictated thatpartitionsbegin
on cylinder boundaries, or that the OS needed to begin and end on a cylinder boundary.
Jonathan de Boyne Pollard (JDBP) disputes that claim ¹⁴ , saying:

It is often believed that disc partitions have to be aligned to cylinder or track
boundaries. This is not in fact true and never really has been. There are align-
ment considerations fordiscpartitions, but theyhavenothing todowith cylin-
ders, and they aren’t mandatory. Operating systems will still work with mis-
aligned partitions, just more slowly for some (not all) disc unit models.

The idea that disc partitions have to aligned to cylinder boundaries is non-
sense on its face. Millions of people have had discs where the first primary
partition began on track zero, sector one, head one with no ill effect whatso-
ever on operating systems from MS-DOS through Windows NT to OS/2. That
was, after all, the default that fdisk/Disk Manager on those operating systems
used for almost two decades. At best, the purported alignment requirement
would have been a track alignment, with all partitions starting at sector one
(Sectors are numbered from one, remember.) of any given track.

¹⁰ Seagate.com - Transition to Advanced Format 4K Sector Hard Drives: http://www.seagate.com/
tech-insights/advanced-format-4k-sector-hard-drives-master-ti/

¹¹ Pixel Beat - Details of GRUB on the PC: http://www.pixelbeat.org/docs/disk/
¹² The Grand Unified Boot Loader (GRUB): http://www.gnu.org/software/grub/
¹³ Linux Loader (LILO): http://lilo.alioth.debian.org/
¹⁴ The gen on disc partition alignment: http://homepage.ntlworld.com/jonathan.

deboynepollard/FGA/disc-partition-alignment.html

http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.pixelbeat.org/docs/disk/
http://www.gnu.org/software/grub/
http://lilo.alioth.debian.org/
http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/disc-partition-alignment.html
http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/disc-partition-alignment.html

The Linux Sysadmins Guide to Virtual Disks 71 / 73

But this is not true, either. No version of any operating system has actually
required this. Even MS-DOS was quite happy to have disc partitions starting
at sectors other than 1. The only things that have required this have been disc
partitioning utilities. There’s been a bit of circular logic about this. The disc
partitioning utilities enforced the requirement because their authors thought
that it was a requirement, but people only thought that it was a requirement
because fdisk and the like enforced it. It was what the partitioning utility pro-
grams enforced — so the logic went — so it must have been a restriction. In
fact it never was, and no operating system itself has any trouble with this.

—Jonathan de Boyne Pollard

What we can take away from JDBP here is this: Operating systems, not even MS-DOS,
require partition’s to begin (or end) on cylinder or track boundaries.

The very idea that partitionshave such restrictions is a complete falsehood. A story passed
down from hacker generation to generation, accepted as canon and never questioned.

JDBP goes on to also discuss the 4KiB alignment rule:

There is adiscpartitionalignment rule thatdoes reflect theactual hardware. It
is the rule that partitions be aligned to 4KiB boundaries. This rule only makes
sense for some hard disc models, however.

In some hard disc models, the internal sector size has been increased from
0.5KiB to 4KiB. At the I/O command level, as system softwares access the disc,
the sector size is still 0.5KiB, however. Such discs are known as “512 byte em-
ulation” discs […]

What happens on such “512e” discs is that whenever the operating system
or the firmware reads a 0.5KiB sector, the disc unit itself is actually reading a
whole 4KiB and handing the firmware/operating system the appropriate one-
eighth; and whenever the firmware/operating system writes a 0.5KiB sector,
the disc unit is actually reading a whole 4KiB sector, modifying one eighth,
and writing the whole 4KiB back again.

[…]

So it’s simply necessary to ensure that those eight 0.5KiB sectors are contigu-
ous and aligned to an actual 4KiB sector on the disc. The “natural” I/O bound-
aries used by the operating systemmust align with the internal, hidden, 4KiB
boundaries of the physical disc. The eight 0.5KiB sectors in the I/O command
mustnot span twoormore4KiBphysical sectors; butmustbeexactly one4KiB
sector, and in the right order within that sector.

Whatwe should first observe from this second quote is that there is a rule regarding sector
alignment. But that rule has nothing to do with operating system requirements. Further-
more, this is only a rule and we are not obligated to follow it. Failure to follow the rule
simply results in degraded I/O performance.

I recommend reading the entire page for a complete overview of these topics. JDBP does
an excellent job separating the fact from fiction and explains how you can achieve correct
4KiB alignment, or realignment if you need to fix an existing system.

Note
Formore information on the “native” 4KiB disk drive topic I recommend review-
ing footnote ¹⁰.

The Linux Sysadmins Guide to Virtual Disks 73 / 73

Colophon

This book was created using free/open source software. All media within was created and
saved in formats unencumbered by patents.

The standard typeface used in this book is Source Sans Pro ¹⁵ , themonospaced sequences
use Source Code Pro. ¹⁶ Both of these beautiful fonts families were designed by Paul D.
Hunt ¹⁷ at Adobe Systems Incorporated. Moreover, both of these families are available for
use under the Open Font License version 1.1 ¹⁸ .

This book was written in 100% lint-free DocBook 5.1 XML ¹⁹ .

Composition of this book took place entirely in Emacs (nXML/RNGmode if you’re curious),
on an assortment of Fedora Linux ²⁰ releases ranging from Fedora 11, Leonidas, to Fedora
23 (first edition published).

The single-page HTML version of this book ²¹ uses Twitter Bootstrap ²² for styling.

The print and PDF versions of this bookwere produced using an xsltproc → dblatex → xetex
→ xdvipdfmx toolchain.

¹⁵ Source SansProAnnouncement (2012-08-02): http://blogs.adobe.com/typblography/2012/
08/source-sans-pro.html

¹⁶ Source Code Pro Announcement (2012-09-24): http://blogs.adobe.com/typblography/
2012/09/source-code-pro.html

¹⁷ Paul D. Hunt on Adobe.com: http://www.adobe.com/products/type/font-designers/
paul-hunt.html

¹⁸ SIL Open Font License: http://scripts.sil.org/OFL
¹⁹ DocBook 5: The Definitive Guide: http://docbook.org/tdg51/en/html/
²⁰ Visit the Fedora Project Homepage: https://getfedora.org/
²¹ Single-page HTML: http://scribesguides.com/books/vdg/latest/

Virtual-Disk-Operations.html
²² Twitter Bootstrap: http://getbootstrap.com/

http://blogs.adobe.com/typblography/2012/08/source-sans-pro.html
http://blogs.adobe.com/typblography/2012/08/source-sans-pro.html
http://blogs.adobe.com/typblography/2012/09/source-code-pro.html
http://blogs.adobe.com/typblography/2012/09/source-code-pro.html
http://www.adobe.com/products/type/font-designers/paul-hunt.html
http://www.adobe.com/products/type/font-designers/paul-hunt.html
http://scripts.sil.org/OFL
http://docbook.org/tdg51/en/html/
https://getfedora.org/
http://scribesguides.com/books/vdg/latest/Virtual-Disk-Operations.html
http://scribesguides.com/books/vdg/latest/Virtual-Disk-Operations.html
http://getbootstrap.com/

	Acknowledgments
	Introduction
	Introduction
	Typographical Conventions
	Units & Prefixes
	Getting Help/Feedback
	Updates and Alternative Formats
	About The Author

	The Virtual Disk Cookbook
	Creating Simple Images
	Resizing Disk Images
	Resizing RAW Images
	Resizing QCOW2 Images

	Query an Image for Information
	Converting Between RAW and QCOW2
	Convert an Image from RAW to QCOW2
	Convert an Image from QCOW2 to RAW

	Creating Disks with Backing Images
	Comitting changes to a backing image
	Cloning a Physical Disk

	Disk Concepts
	Creating a 1GiB virtual disk from scratch
	 Background on the dd command
	 Running dd
	Examining the Created File
	Create a Partition Table

	Devices and Partitions
	Introduction
	Creating a Loop Device
	Examine the loop device
	Creating partitions
	Formatting Partitions
	Cleaning Up

	Helper Utilities
	libguestfs
	guestmount
	virt-filesystems
	virt-rescue
	virt-resize
	virt-sparsify

	virt manager

	Disk Formats
	RAW
	QCOW
	QCOW2
	Other Formats

	Performance Considerations
	I/O Caching
	Write-back Caching
	Write-through Caching

	I/O Schedulers
	Additional Resources

	Troubleshooting/FAQs
	Glossary
	Appendix: Man Pages
	UNITS

	Appendix: Disk Drive History
	Disk Drive Components
	Access Modes
	CHS Addressing
	LBA Addressing

	The Master Boot Record

	Colophon

